Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методические рекомендации по использованию информационных технологий на практических занятиях

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Методические рекомендации по использованию информационных технологий на практических занятиях

Страница 7

Ответ: .

Следующий пример выполняет студент у доски с небольшой помощью преподавателя. Рекомендуется привлечь нескольких студентов для решения. Так же в процессе решения студент должен комментировать свои действия, опираясь на теоретический материал. Эта задача интересна тем, что использует тригонометрические функции.

Исследовать на экстремум функции

, где .

Решение

1. Используем необходимое условие существования экстремума функции. Находим стационарные точки: и решаем систему

а) Если , то

Но согласно условию, что тогда получаем

т.е. точка , а если , то и точка .

б) Если , то .

Таким образом, получили две стационарные точки: и .

2. Второй шаг решения. Используем достаточное условие существования экстремума в точке. Для каждой точки найдем вторые частные производные и составим определитель .

а)

б) Для точки : , следовательно, в точке экстремума нет.

в) Для точки : , следовательно, в точке существует локальный максимум.

3. Найдя точки, в которых функция принимает экстремальные значения, найдем максимальные и минимальные значения функции. В данном случае точка экстремума одна: : .

Ответ: .

Этот пример позволяет студентам вспомнить производные тригонометрических функций, способы решения тригонометрических систем.

В следующем примере студенты увидят, как находить экстремумы функции, если она задана неявно. Следует особо обратить внимание на нахождение частных производных, так как здесь могут возникнуть затруднения и ошибки. Здесь помимо знаний математического анализа, применяются и методы элементарной математики. Это и позволяет реализовать межпредметную связь.

Исследовать на экстремум функции

.

Решение

1. Преобразуем исходную функцию, раскрыв скобки и приведя подобные слагаемые: .

Рассматриваем квадратное уравнение относительно . Найдем корни этого уравнения:

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Это интересно:

Особенности формирования детско-родительских отношений в семьях воспитывающих детей с нарушением зрения
Основное влияние на формирование полноценной личности ребёнка оказывает семья, и очень многое зависит от правильного родительского поведения, особенно в семьях, имеющих детей с нарушением зрения. Родители такого ребенка должны как можно раньше обращаться к специалистам для адекватной оценки его спо ...

Теоретические основы проблемного обучения
Задачей наших школ является формирование гармонически развитой личности. Важнейший показатель всесторонне и гармонично развитой личности - наличие высокого уровня мыслительных способностей. Если обучение ведет к развитию творческих способностей, то его можно считать развивающим обучением, то есть т ...

Методика формирования познавательной активности дошкольников
Познавательная деятельность дошкольника подразумевает, с одной стороны – действенный, а с другой – образный способы познания. Важно выяснить, насколько связаны между собой мотивы, направленные на действенное и образное познание мира. Какой вид познавательной деятельности является более предпочитаем ...

КАТЕГОРИИ

Copyright © 2020 - All Rights Reserved - www.dealeducation.ru