Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Находим частные производные второго порядка в точке :
и составляем определитель
Исходя из достаточного условия существования локального экстремума, делаем вывод:
, следовательно, точка
является точкой локального экстремума;
Так как , то в точке
функция имеет локальный минимум.
Теперь узнаем значение исходной функции в точке
, которое и будет являться наименьшим значением функции
Ответ:
Особенно стоит заострить внимание на алгоритме нахождения локального экстремума, а так же на том, что определяем экстремум на всей области существования функции.
Надо так же рассказать студентам необходимое и достаточное условие существование функции трех переменных.
1. Необходимое условие
2. В достаточном условии меняется только определитель
,
а условия существования, максимума и минимума остаются без изменений с поправкой на количество переменных.
Следующей задачей преподавателя является ответ на вопросы студентов. После этого переходим к другому примеру.
Он разбивается на несколько этапов и решается двумя студентами. Первый проверяет необходимое условие существования экстремума и находит стационарные точки, второй – достаточное условие, точки максимума и минимума, максимальные и минимальные значения функции. Решение примера осуществляется при активной помощи преподавателя.
Исследовать на экстремум функцию
.
Решение
Проверим выполнение необходимого условия существования экстремума функции. В результате чего получим стационарные точки.
Находим частные производные и составляем систему уравнений
;
Решим отдельно уравнение . Дробь равна нулю, когда ее числитель равен нулю, т.е.
. Пусть
, тогда исходное уравнение примет вид квадратного трехчлена
. Используя теорему, обратную теорему Виета, получаем корни уравнения
.
Таким образом получаем:
подставляя полученные значения в систему получаем четыре стационарные точки:
Используя теорему о достаточном условии существования экстремума функции двух переменных, составляем определитель и находим точки максимума и минимума.
Найдем производные второго порядка:
Это интересно:
Стили воспитания и ошибки, влияющие на формирование подросткового
эгоцентризма
Семья – это чаще всего скрытый от внешнего наблюдения мир сложных взаимоотношений, традиций и правил, которые в той или иной степени сказываются на особенностях личности ее членов, и в первую очередь детей. Тем не менее, существует ряд объективных социальных факторов, которые, так или иначе, сказыв ...
Основы проблемного обучения
Концепция проблемного обучения, как и любая другая педагогическая концепция, при ее формулировке неизбежно раскрывает субъективные особенности сознания, предпочтения педагога или исследователя. Именно поэтому в педагогической литературе даются различные определения этого понятия, в той или иной мер ...
Особенность “математического” мышления
Под математическим мышлением, как его определяют многие из психологов и математиков (Р. Атаханов, Ж. Пиаже, Д.Ж. Икрамов, А.И. Маркушевич и др.) будем понимать теоретическое мышление на предметном, т.е. математическом материале. Для того, чтобы понять специфику такого рода мышления, изложим взгляды ...