Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Находим частные производные второго порядка в точке :
и составляем определитель
Исходя из достаточного условия существования локального экстремума, делаем вывод:
, следовательно, точка
является точкой локального экстремума;
Так как , то в точке
функция имеет локальный минимум.
Теперь узнаем значение исходной функции в точке
, которое и будет являться наименьшим значением функции
Ответ:
Особенно стоит заострить внимание на алгоритме нахождения локального экстремума, а так же на том, что определяем экстремум на всей области существования функции.
Надо так же рассказать студентам необходимое и достаточное условие существование функции трех переменных.
1. Необходимое условие
2. В достаточном условии меняется только определитель
,
а условия существования, максимума и минимума остаются без изменений с поправкой на количество переменных.
Следующей задачей преподавателя является ответ на вопросы студентов. После этого переходим к другому примеру.
Он разбивается на несколько этапов и решается двумя студентами. Первый проверяет необходимое условие существования экстремума и находит стационарные точки, второй – достаточное условие, точки максимума и минимума, максимальные и минимальные значения функции. Решение примера осуществляется при активной помощи преподавателя.
Исследовать на экстремум функцию
.
Решение
Проверим выполнение необходимого условия существования экстремума функции. В результате чего получим стационарные точки.
Находим частные производные и составляем систему уравнений
;
Решим отдельно уравнение . Дробь равна нулю, когда ее числитель равен нулю, т.е.
. Пусть
, тогда исходное уравнение примет вид квадратного трехчлена
. Используя теорему, обратную теорему Виета, получаем корни уравнения
.
Таким образом получаем:
подставляя полученные значения в систему получаем четыре стационарные точки:
Используя теорему о достаточном условии существования экстремума функции двух переменных, составляем определитель и находим точки максимума и минимума.
Найдем производные второго порядка:
Это интересно:
Категории и функции многодетной семьи
Существуют различные объяснения высокой рождаемости в семьях и связанной с ней многодетности. Одно из них состоит в том, что одна из причин многодетности – национальные традиции и обычаи, влияющие на формирование норм о числе детей в семье. Другое объяснение заключается в отсутствии свободы выбора ...
Восстановительные
свойства гидросульфита натрия
Опыт 1. Взаимодействие гидросульфита натрия с гидроксидом меди(П) Реактивы и оборудование: 10%-ный раствор сульфата меди(П), 10%-ный раствор гидроксида натрия, раствор гидросульфита натрия; пробирки, спиртовка, фарфоровая чашечка. Выполнение опыта. В пробирку с 3 мл раствора гидросульфита натрия до ...
Сущность понятий "гуманизм", "гуманистические
отношения"
Гуманизм - это исторически изменяющаяся система воззрений, признающая ценность человека как личности, его право на свободу, счастье, развитие и проявление своих способностей, считающая благо человека критерием оценки социальных институтов, а принципы равенства, справедливости, человечности, желаемо ...