Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методические рекомендации по использованию информационных технологий на практических занятиях

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Методические рекомендации по использованию информационных технологий на практических занятиях

Страница 10

5. В выражении функции имеется слагаемое , то естественно взять прямую , так как на ней первое слагаемое исходной функции

равно нулю и знак функции зависит только от знака второго слагаемого .

6. Очевидно, что если , то . Если , то .

7. Можно сделать вывод, что в любой окрестности точки есть как положительные, так и отрицательные значения функции, поэтому экстремума в точке нет.

Ответ: экстремума нет.

В конце занятия ответить на возникшие вопросы. Предупредить, что следующее занятие начнется с самостоятельной работы по теоретической и практической части. А так же о необходимости подготовки теоретических вопросов по теме «Условный экстремум. Наибольшие и наименьшие значения функции», практическое занятие №5,6 из методических указаний, в них указаны примеры домашнего задания. Ниже приводятся решения домашних примеров.

Домашняя работа

Исследовать на экстремум заданную функцию

Решение

1. Находим стационарные точки, в которых выполняется необходимое условие существования локального экстремума функции путем решения системы

а) Определим частные производные первого порядка заданной функции:

б) Составляем и решаем систему. В результате получим стационарные точки, т.е. точки подозрительные на экстремум:

, таким образом, мы получили искомую стационарную точку .

2. Теперь необходимо проверить выполнение достаточного условия существования экстремума в стационарной точке, для этого необходимо найти определитель , где частные производные второго порядка в стационарной точке:

Составляем определитель:.

3. Таким образом, получили, что . Из теоремы о достаточном условии существовании экстремума можно сделать вывод, что точка является точкой локального максимума функции.

4. Найдем значение исходной функции в точке, которое является максимальным значением функции:

.

Ответ: .

Найти экстремум функции

.

Решение

На основании необходимого условия существования экстремума нужно найти точки подозрительные на экстремум или так называемые стационарные точки.

Для этого необходимо решить систему

Находим частные производные первого порядка:

Страницы: 5 6 7 8 9 10 11 12 13 14 15

Это интересно:

Организация педагогического процесса в разновозрастных группах
Организация педагогического процесса в разновозрастных группах имеет свои особенности и сложности, требует от педагога знания программ всех возрастных групп, умения сопоставлять программные требования с возрастными и индивидуальными особенностями детей, способности правильно распределять внимание, ...

Общение со взрослым, как фактор развития познавательной активности детей старшего дошкольного возраста
Со временем внимание дошкольников все более привлекают события, происходящие среди окружающих людей. Человеческие отношения, нормы поведения, качества отдельных людей начинают интересовать ребенка даже больше, чем жизнь животных или явления природы. Что можно, а что нельзя, кто добрый, а кто жадный ...

Кинестетическое восприятие как необходимый фактор развития речи
Для своевременного формирования речи необходима согласованная работа всего артикуляционного аппарата ребенка. Непосредственная близость в головном мозге речевых и моторных зон и соответственно их сохранность обеспечивает нормальное речевое развитие ребенка. М.А. Пискунов, Л.М. Шипицина, Е.М. Мастюк ...

КАТЕГОРИИ

Copyright © 2019 - All Rights Reserved - www.dealeducation.ru