Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методические рекомендации по использованию информационных технологий на практических занятиях

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Методические рекомендации по использованию информационных технологий на практических занятиях

Страница 14

найти точки, наиболее близкие к центру и наиболее удаленные от него.

Решение

1. Пусть точка лежит на поверхности эллипсоида, тогда расстояние от нее до центра вычисляется по формуле .

2. Очевидно, максимальное значение подкоренного выражения даст наибольшее, а минимальное – наименьшее расстояние .

3. Следовательно, задача сводится к исследованию на экстремум функции трех переменных при уравнении связи .

4. Составим вспомогательную функцию (функцию Лагранжа):

.

5. Решаем систему уравнений, тем самым, проверяя необходимое условие существования экстремума:

Итак, получаем:

Из последнего уравнения системы следует, что не могут быть одновременно, равняться нулю. Поэтому один из сомножителей

должен равен нулю.

6. Пусть , т.е. . Тогда , так как , следовательно, . Из четвертого уравнения системы получаем . Таким образом, получили две стационарные точки: .

Рассуждая аналогично при получим , а при стационарные точки:.

Полученные точки являются концами трех главных осей эллипсоида. Так как , то можно утверждать, что в точках функция достигает максимума, а в - минимума. В стационарных точках экстремума не существует.

Ответ: - максимума, - минимума.

Переходим к следующей теме, в которой понадобятся уже имеющиеся знания, но применяемые для другой цели – отыскания наибольших и наименьших значений функции. В частности, изучается только случай замкнутой области. Здесь можно спросить одного из студента об алгоритме нахождения наибольших и наименьших значений функции в замкнутой области, который изложен в лекционном курсе. Затем рассмотреть этот алгоритм на конкретном примере.

Найти наибольшее и наименьшее значения функции в замкнутой области, заданной неравенствами .

Решение

1. Первым этапом решения примера является изображение этой области:

, т.е. это область ограниченная

прямыми – это треугольник.

Страницы: 9 10 11 12 13 14 15 16 17 18

Это интересно:

Методические рекомендации по использованию информационных технологий на практических занятиях
Осуществление компьютерного обучения на базе новых информационных технологий является одним из важных направлений совершенствования профессиональной подготовки будущих педагогов По теме «Экстремумы, условный экстремум и наибольшее, наименьшее значения функций двух переменных» создано электронное по ...

Применение форм внеклассной работы в средних и старших классах
В средних классах могут быть использованы как одна, так и несколько форм внеклассной работы по математике: математические конкурсы, викторины; математические кружки; математические утренники; математические экскурсии; математические сочинения и математическая печать; командные соревнования; олимпиа ...

Приемы обучения иностранному языку
Что же представляют собой приемы любой деятельности? Совершенно очевидно, что это меньшая абстракция, чем метод-способ деятельности, однако большая, чем конкретное действие. Думается, что прием обобщает и типизирует конкретные действия применительно к обучению ИЯ. Это, например, списывание (букв, с ...

КАТЕГОРИИ

Copyright © 2025 - All Rights Reserved - www.dealeducation.ru