Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Решение
a) Первый способ (через функцию одной переменной).
1. Выразим одну переменную через другую в уравнении связи .
2. Подставим в исходную функцию, получили функцию одной переменной: .
3. Используя методику нахождения экстремума функции одной переменной, найдем первую производную функции по переменной
. Приравняем ее к нулю. Тем самым найдем стационарные точки первого рода:
. Отсюда
- стационарная точка 1-го рода.
4. Найдем вторую производную функции , и найдем ее значение при
:
, следовательно, в точке
функция одной переменной принимает максимальное значение. Находим значение
из уравнения связи:
.
Следовательно, точка - точка максимума для исходной функции, и он равен
.
б) Второй способ.
1. Рассмотрим функцию Лагранжа: .
2. Найдем локальный экстремум для этой функции. Для этого необходимо, используя необходимое условие существования экстремума функции, вычислить первые частные произвольные функции и решить систему, тем самым найдем стационарные точки: и составляем систему:
Не трудно видеть, что в точке функция
достигает наибольшего значения
.
Ответ: .
Найти наименьшее и наибольшее значения функций: в треугольнике, ограниченном прямыми
.
Решение
1. Изобразим эту область, это треугольник, ограниченный прямыми
Обозначим его АВС.
2. Найдем локальный экстремум функции .
Используя необходимое условие существования локального экстремума функции двух переменных, находим стационарные точки.
Находим и составляем систему:
- стационарная точка, и отмечая ее на графике, оцениваем принадлежность ее области АВС. Она не принадлежит области. Следовательно, она не рассматривается, так как не удовлетворяет условиям:
.
3. Исследуем функцию на границах области.
а) Рассмотрим ВС. На этой прямой переменная принимает значение 1. Подставляя значение 1 в исходную функцию, получаем функцию одной переменной и находим ее производную. Это необходимо для исследования функции на экстремум:
. Приравниваем первую производную к нулю, тем самым находим точку, подозрительную на экстремум, и вычисляем значение функции в этой точке:
Точка не принадлежит области.
Это интересно:
Реализация комплекса упражнений, направленных на формирование представлений
о функциональной зависимости у младших школьников
С целью формирования у младших школьников представлений о функциональной зависимости нами был проведен формирующий этап эксперимента, в котором приняли участие только учащиеся экспериментального 3 «А» класса. Для этого нами применялся комплекс подобранных для этой цели упражнений, направленных на ф ...
Особенности интеллектуального развития дошкольников
Развитие ребенка особенно эффективно, когда оно начинается в раннем возрасте. Детям свойственны огромная познавательная активность, уникальная способность к восприятию нового. Но если эти качества вовремя не развивать и не востребовать, они могут быть впоследствии безвозвратно утеряны. Интеллектуал ...
Методы и формы работы с педколлективом
Формы методической работы в детском саду многообразны. Некоторые из них способствуют решению сразу нескольких задач. Так, педагогический совет, где слушается отчет воспитателей группы о работе по какому-либо разделу речевой работы, например по совершенствованию грамматической стороны речи детей за ...