Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методические рекомендации по использованию информационных технологий на практических занятиях

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Методические рекомендации по использованию информационных технологий на практических занятиях

Страница 13

,

где - неопределенный постоянный множитель, и ищут обычный экстремум этой вспомогательной функции. Необходимые условия экстремума сводятся к системе трех уравнений

с тремя неизвестными , из которой можно определить эти неизвестные.

Вопрос о существовании и характере условного экстремума решается на основании изучения знака второго дифференциала функции Лагранжа

.

Функция имеет условный максимум, если , и условный минимум, если . В частности, если определитель для функции в стационарной точке положителен, то в этой точке имеется условный максимум функции , если (или ), и условный минимум, если (или ).

В случае если уравнение связи достаточно просто, можно в уравнение связи выразить одну переменную через другую и подставить в исходную функцию.

Рассмотрим такой пример. Для его решения вызывается студент к доске и, если необходимо, с помощью преподавателя решает с подробным пояснением. Во время решения остальные студенты записывают объяснения по каждому этапу решения, что облегчит им самостоятельное понимание темы.

Найти условный экстремум функции при условии, что переменные связаны уравнением .

Решение

1. Так как уравнение связи достаточно сложно, то составим функцию Лагранжа: .

2. Проверим выполнение необходимого условия существования функции Лагранжа, для этого решим систему:

3. Составим дифференциал первого порядка функции Лагранжа, для этого находим вторые частные производные функции Лагранжа:

.

Тогда дифференциал второго порядка функции Лагранжа примет вид:

.

Найдем его значение для :

А) Если , то и, следовательно, в этой точке функция имеет условный минимум.

Б) Если , то , следовательно, в этой точке функция имеет условный максимум.

Таким образом,

Ответ:

Этот пример позволил студентам приметь уже имеющиеся знания в новой ситуации. Сформировывается алгоритм решения задач на отыскание экстремумов функции нескольких переменных.

На поверхности трехосного эллипсоида

,

Страницы: 8 9 10 11 12 13 14 15 16 17 18

Это интересно:

Социально-территориально-культурные основания «проектов» воспитательной работы
В современных процессах культурного воспроизводства можно выделить два конкурирующих направления: процесс глобальной унификации культурного многообразия и процесс регионализации – оформления социокультурной уникальности регионов и городов. Переход России от тоталитарного к демократическому обществе ...

Социальный портрет современной многодетной семьи
Многодетные семьи были наиболее распространены в России в начале ХХ века и составляли основную долю населения страны. Они были достаточно распространены во всех слоях общества: от беднейшего крестьянства до дворян. Это обусловливалось традициями русского народа и православной морали. Рождение детей ...

Особенности средств массовой информации в воспитательном процессе начальной школы
Все более широкое использование средств массовой информации в воспитательном процессе ставит немало сложных проблем, как перед педагогами, так и перед школьниками. Телевидение превратило зрителя в соучастника живого действия и уподобило общение с экрана общению с людьми. Выполняя самые многообразны ...

КАТЕГОРИИ

Copyright © 2019 - All Rights Reserved - www.dealeducation.ru