Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методические рекомендации по использованию информационных технологий на практических занятиях

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Методические рекомендации по использованию информационных технологий на практических занятиях

Страница 13

,

где - неопределенный постоянный множитель, и ищут обычный экстремум этой вспомогательной функции. Необходимые условия экстремума сводятся к системе трех уравнений

с тремя неизвестными , из которой можно определить эти неизвестные.

Вопрос о существовании и характере условного экстремума решается на основании изучения знака второго дифференциала функции Лагранжа

.

Функция имеет условный максимум, если , и условный минимум, если . В частности, если определитель для функции в стационарной точке положителен, то в этой точке имеется условный максимум функции , если (или ), и условный минимум, если (или ).

В случае если уравнение связи достаточно просто, можно в уравнение связи выразить одну переменную через другую и подставить в исходную функцию.

Рассмотрим такой пример. Для его решения вызывается студент к доске и, если необходимо, с помощью преподавателя решает с подробным пояснением. Во время решения остальные студенты записывают объяснения по каждому этапу решения, что облегчит им самостоятельное понимание темы.

Найти условный экстремум функции при условии, что переменные связаны уравнением .

Решение

1. Так как уравнение связи достаточно сложно, то составим функцию Лагранжа: .

2. Проверим выполнение необходимого условия существования функции Лагранжа, для этого решим систему:

3. Составим дифференциал первого порядка функции Лагранжа, для этого находим вторые частные производные функции Лагранжа:

.

Тогда дифференциал второго порядка функции Лагранжа примет вид:

.

Найдем его значение для :

А) Если , то и, следовательно, в этой точке функция имеет условный минимум.

Б) Если , то , следовательно, в этой точке функция имеет условный максимум.

Таким образом,

Ответ:

Этот пример позволил студентам приметь уже имеющиеся знания в новой ситуации. Сформировывается алгоритм решения задач на отыскание экстремумов функции нескольких переменных.

На поверхности трехосного эллипсоида

,

Страницы: 8 9 10 11 12 13 14 15 16 17 18

Это интересно:

Педагогическое диагностирование младших школьников с ЗПР
В должностные функции учителя не входит квалификация состояния ребенка. Однако это вовсе не означает, что педагогическая деятельность исключает диагностические методы и приемы работы. Ведь прежде чем работать над развитием какого-либо процесса, следует убедиться в необходимости такой работы. Кроме ...

Особенности формирования представлений старших дошкольников о здоровом образе жизни
Задачи и содержание воспитания детей старшего дошкольного возраста многогранны. Особое место среди них занимают проблемы охраны здоровья детей и их физического воспитания, т.к. от эффективности решения этих проблем зависит полноценное развитие ребенка. У детей старшего дошкольного возраста есть все ...

Сущность и значение контроля
Важнейшей особенностью человека является способность овладеть общественно историческим опытом, накопленным за всю историю существования предшествующих поколений. Каждое новое поколение застает достигнутый уровень производственных сил, объем знаний, умений, навыков. Вопросы контроля обученности учащ ...

КАТЕГОРИИ

Copyright © 2025 - All Rights Reserved - www.dealeducation.ru