Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Методические рекомендации по использованию информационных технологий на практических занятиях

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Методические рекомендации по использованию информационных технологий на практических занятиях

Страница 12

Вариант первый

1. Сформулируйте необходимое условие экстремума функции.

2. Исследовать на экстремум функцию .

Вариант второй

1. Сформулируйте достаточное условие экстремума функции.

2. Исследовать на экстремум функцию .

Это поможет проверить выполнение домашней работы. Не стоит на самостоятельной работе давать задания, которые имеют слишком громоздкое решение за счет большого количества элементарных операций. Необходимо решать задания, позволяющие показать главную суть решения, а не количество операций.

Студенты у доски излагают теоретические вопросы, необходимые на занятии:

1. Определение условного экстремума.

2. Теорема о существовании условного экстремума.

3. Алгоритм нахождения наибольшего и наименьшего значения функции.

После проверки домашнего задания преподаватель подробно разбирает пример.

Найти точки условного экстремума и его величину следующей функции , при .

Решение

1. Выразим одну переменную через другую в уравнении связи .

2. Подставим в исходную функцию: функцию одной переменной, полученную из уравнения связи .

3. Используя методику нахождения экстремума функции одной переменной, найдем первую производную функции по переменной . Приравняем ее к нулю. Тем самым найдем стационарные точки первого рода. Так как функция при , то получаем что . Отсюда - стационарная точка 1-го рода.

4. Найдем вторую производную функции и найдем ее значение при :

Отсюда следует, что точка- точка максимума для функции . Из уравнения связи, подставив значение, получаем , а - точка максимума для исходной функции, и он равен .

Ответ: .

1. Локальный максимум функции одной переменной здесь является условным локальным максимумом для функции двух переменных, так как уравнение связи учтено.

2. Если уравнение связи представлено достаточно сложной функцией, то отыскание условного экстремума функции двух переменных сводят к исследованию функции Лагранжа.

Далее дается теоретический материал необходимый для решения следующего задания.

1. Условный экстремум.

Условным экстремумом функции называется максимум или минимум этой функции, достигаемый при условии, что его аргументы связаны уравнением (уравнение связи). Чтобы найти условный экстремум функции при наличии соотношения, составляют так называемую функцию Лагранжа

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Это интересно:

Методика организации государственной аттестации учащихся 9-х классов
Устные экзамены по физической культуре лучше проводить в спортивном зале, который подразделяется на три сектора. В первом секторе располагаются члены аттестационной комиссии, число которых должно быть не менее трех человек. В число экзаменаторов, кроме учителей физической культуры, могут вводиться ...

Моделирование учебного процесса на примере темы “ Издержки производства”
В переводе с греческого технология - это “ учение о мастерстве”. (Это совокупность операций, осуществляемых определенным образом и в определенной последовательности, для достижения поставленных целей). Технология управления - это единство стереотипных и творческих действий. Технологизация учебного ...

Характеристика авторской личностно ориентированной методической системы образовательного учреждения
Как определить, что руководитель образовательного учреждения занят созданием именно авторской методической системы, а не чего-то иного? Личностный подход как раз и позволяет вести поиск таких критериев. К ним, по мнению В. В. Серикова, относятся: 1) удержание руководителем в поле своего сознания ко ...

КАТЕГОРИИ

Copyright © 2021 - All Rights Reserved - www.dealeducation.ru