Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Приемы развития геометрических представлений младших школьников при обучении математики в вариативных программах

Педагогика и воспитание » Формирование пространственного мышления у детей младшего школьного возраста на уроках математики » Приемы развития геометрических представлений младших школьников при обучении математики в вариативных программах

Страница 1

Анализируя учебники по математики для начальной школы, можно сказать, что в них присутствуют задания на развития пространственного мышления. Но несмотря на это, нужно использовать не только тот материал, что дан в учебнике, но и искать свои задания, упражнения, которые бы формировали у учащихся пространственное мышление.

Анализ программы и учебников традиционной системы обучения (программа 1-4), М.И. Моро, С.В. Степанов.

Данный курс предполагает формирование у детей пространственных представлений, ознакомление учащихся с различными геометрическими фигурами и некоторыми их свойствами, с простейшими чертежными и измерительными приборами. Геометрический материал предусмотрен программой для каждого класса. Круг формируемых у детей представлений о различных геометрических фигурах и некоторых их свойствах расширяется постепенно. Это точка, линия (прямая, крива), отрезок, ломаная, многоугольники различных видов и их элементы (углы, вершины, стороны, круг, окружность и др.).

При формировании представлений о фигурах большое значение придается выполнению практических упражнений, связанных с построением, вычерчиванием фигур, с рассмотрением некоторых свойств изучаемых фигур (например, свойства противоположных сторон прямоугольника, диагоналей прямоугольника, в частности квадрата); упражнений, направленных на развитие геометрической зоркости (умения распознавать геометрические фигуры на сложном чертеже, составлять заданные геометрические фигуры из частей и др.).

Работа над геометрическим материалом по возможности увязывается и с учением арифметических вопросов. Так, с самого начала геометрические фигуры и их элементы используются в качестве объектов счета предметов. После ознакомления с измерением длины отрезка решаются задачи на нахождение суммы и разности двух отрезков, длины ломанной, периметра многоугольника и в том числе прямоугольника (квадрата), а в дальнейшем и площади прямоугольника (квадрата). Нахождение площади прямоугольника (квадрата) связывается с изучением умножения, задача нахождения стороны прямоугольника (квадрата) по его площади - с изучением деления.

Различные геометрические фигуры (отрезок, многоугольник, круг) используются и в качестве наглядной основы при формировании представлений и в качестве наглядной основы при формировании представлений о долях величин, а также при решении разного рода текстовых задач.

Анализ программы Л.Г. Петерсон.

Особенности изучения геометрических понятий - их ранее введение.

При этом на первых порах основное внимание уделяется формированию пространственных представлений, развитию речи и практических навыков черчения. С самых первых уроков 1 класса обучающиеся знакомятся с такими геометрическими фигурами, как квадрат, прямоугольник, треугольник, круг. Разрезание этих фигур на части и составление новых фигур из полученных частей помогает им уяснить инвариативность площади, способствует развитию комбинаторных способностей. Наряду этими конкретными вопросами рассматривается более абстрактные понятия точки, отрезка, ломанной линии, многоугольника. Уже в первом классе учащиеся знакомятся с такими общими понятиями, как область, граница, есть линий и др. эти понятия имеют топологический характер. Поэтому область их применения весьма обширна. Вместе с тем дети без труда их усваивают, так как топологические представления у них развиваются раньше, чем метрические.

Сравнительно рано появляются в курсе простейшие пространственные образы: куб, параллелепипед, цилиндр, пирамида, шар, конус.

Уже во 2 классе учащиеся решают задачи на вычисление площади поверхности и объема параллелепипеда, которое сопровождается черчением развёрток, склеивание фигур по их развёрткам и т.д. подобные задачи не только развивают пространственные представления и формируют практические навыки, но и служат также средством наглядной интерпретации изучаемых арифметических фактов. Например, вычисление площади прямоугольника является наглядной модель действия умножения, а вычисление объема параллелепипеда обосновывает сочетательное свойство этого арифметического действия. Учащиеся знакомятся с кругом и окружностью, учатся строить эти геометрические фигуры с помощью циркуля. Детям предлагаются задания на вычерчивание узоров из окружностей и геометрических фигур.

Запас геометрических представлений и навыков, накопленных у детей к 3 классу, позволяет поставить перед ними новую, значительно более глубокую и увлекательную цель: исследование и открытие свойств геометрических фигур. С помощью построений и измерений они выявляют различные геометрические закономерности, которые формулируют как предложение, гипотезу. Задача учителя состоит в том, чтобы раскрыть перед детьми красоту и гармонию этих удивительных закономерностей, с одной стороны, а с другой - показать необходимость их логического обоснования, доказательства. Всё это не только формирует необходимые практические навыки доя полноценного изучения систематического курса геометрии, но и мотивирует аксиоматическое построение этого курса, помогает обучающимся осознать смысл их деятельности на уроках геометрии в старших классах.

Страницы: 1 2 3

Это интересно:

Система внеклассной работы в специальной школе VIII вида
С целью обеспечения необходимых условий для личностного развития, укрепления здоровья, профессионального самоопределения и творческого труда обучающихся, воспитанников в школе разработаны и оказываются образовательные услуги посредством проведения следующих дополнительных учебных занятий хореографи ...

Определение особенностей развития мелкой моторики ведущей руки. Методика «Дорожки» и методика «Птенчики»
Цель задания: определить особенности развития мелкой моторики. Также решается задача выявления ведущей руки. Стимульный материал: для проведения первой методики - простой карандаш, опросный лист (см. на рисунке ниже, расстояния между краями дорожек 1 см). Для проведения второй методики - коробочка ...

Игры, направление на развитие выносливости
В играх выносливость проявляется не в статических, а в динамических условиях роботы, когда чередуются моменты напряжения и расслабления. Эти упражнения, особенно циклического характера, могут вызывать утомление, при этом наблюдается снижение работоспособности. Поэтому такие упражнения следует дават ...

КАТЕГОРИИ

Copyright © 2019 - All Rights Reserved - www.dealeducation.ru