Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Кружок математики в 5 классе, организованный с помощью проблемного метода обучения

Педагогика и воспитание » Реализация проблемного обучения на кружковых занятиях учащихся 5-го класса » Кружок математики в 5 классе, организованный с помощью проблемного метода обучения

Страница 9

Учитель: Какая может быть установлена связь?

Ученик: Возможно, каждое число обозначает порядковый номер буквы в алфавите, вместо которой стоит число в данном ребусе.

Учитель: Попробуйте выполнить это задание, воспользовавшись этим предположением.

Ученик: перебор дерево событие.

Учитель: Как вы считаете, подтвердились ваши предположения. Смогли вы решить ребус?

Ученик: Да, так как в результате замены цифр соответствующими буквами получились слова.

Учитель: Какие же предположения мы можем сделать исходя из решения данного задания для выполнения задания № 3?

Ученик: Необходимо заменить буквы цифрами и, возможно, нужно воспользоваться для этого алфавитом.

Учитель: Попробуйте выполнить это задание, воспользовавшись этим предположением.

Ученики пробуют заменить буквы цифрами, соответствующими их порядковому номеру в алфавите. У них не получается решить ребус таким способом.

Учитель: К каким выводам вы пришли, пытаясь заменить буквы цифрами, обозначающими их порядковый номер в алфавите?

Ученик: Для решения этого ребуса необходимо заменить буквы цифрами, но эти цифры могут не являться порядковыми номерами этих букв в соответствующем алфавите.

Учитель: С учетом сделанных выводов выполните данное задание.

Путем некоторых рассуждений и умозаключений учащиеся должны прийти к следующим выводам.

Ученик: Так как КА + КА + КА оканчивается на КА, то КА = 50, а значит, К = 5, А = 0. Так как Ш + Ш + Ш + 1 оканчивается на 0, то Ш = 3. Так как сумма трех чисел, начинающихся на 5, может начинаться лишь с 1, то С = 1. Рассматривая варианты для О, получаем, что О = 6 или О = 7, а значит, Б = 9 или Б = 2. Значит, получается два возможных решения этого ребуса:

56350 57350

+56350 +57350

56350 57350

169050 172050

Занятие №6 (фрагмент)

Тема: Пересечение множеств.

Цели: Учить решать задачи на пересечение множеств с помощью кругов Эйлера.

III этап: Введение нового материала.

Постановка проблемы

Задание №1. В классе 38 человек. Из них 16 играют в баскетбол, 17 – в хоккей, 18 в волейбол. Увлекаются двумя видами спорта – баскетболом и хоккеем – четверо, баскетболом и волейболом – трое, волейболом и хоккеем – пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни волейболом.

Сколько ребят увлекается одновременно тремя видами спорта?

Сколько ребят увлекается лишь одним видом спорта?

Учитель: С какой проблемой мы столкнулись в данной задаче? Что нам «мешает» в условии?

Ученик: В условии есть данные о количестве учащихся в классе, количестве учащихся занимающихся баскетболом, волейболом и хоккеем. Проблема заключается в том, что некоторые из учащихся занимаются двумя, а некоторые тремя видами спорта. Не понятно, как можно решить эту задачу.

Учитель: Для того, чтобы мы смогли решить эту задачу и поняли как решаются задачи, аналогичные данной, решим следующую задачу.

Постановка проблемы

Задание №2. Все мои подруги выращивают в своих квартирах какие-нибудь растения. Шестеро из них разводят кактусы, а пятеро – фиалки. И только у двоих из них есть и кактусы и фиалки.

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Это интересно:

Определение и простейшие свойства двойного интеграла
Задача об объеме цилиндрического тела Наподобие того, как задача о площади криволинейной трапеции приводит к понятию простого определенного интеграла, аналогичная задача об объеме цилиндрического бруса приводит к новому понятию – двойного (определенного) интеграла. Рассмотрим тело , которое сверху ...

Орфографическая зоркость как орфографическое умение, ее сущность
Орфографическая зоркость - это способность обнаруживать орфограммы, то есть умение ставить орфографические задачи. По мнению Львова М.Р., способность обнаруживать орфограммы является важнейшим орфографическим умением. Лингвисты, психологи, методисты подчеркивают зависимость результатов обучения орф ...

Особенности развития речи детей раннего возраста
Уровень современных научных знаний о ребенке раннего возраста позволяет судить о младенчестве с точки зрения уникальности этого периода. Не случайно в последние десятилетия во всем научном мире появился особый интерес к раннему периоду жизни ребенка. Особый интерес вызывает интеллектуальное и позна ...

КАТЕГОРИИ

Copyright © 2019 - All Rights Reserved - www.dealeducation.ru