Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Кружок математики в 5 классе, организованный с помощью проблемного метода обучения

Педагогика и воспитание » Реализация проблемного обучения на кружковых занятиях учащихся 5-го класса » Кружок математики в 5 классе, организованный с помощью проблемного метода обучения

Страница 13

Учитель: Есть у кого-нибудь предположения, почему не можем остальные фигуры начертить таким же образом?

Учащиеся высказывают свои предположения, но так и не могут прийти к однозначному выводу.

Учитель: Чтобы понять, почему одни фигуры удалось нарисовать одним росчерком, а другие нет, рассмотрим их «сеть кривых». Сеть таких кривых называют графом (от греческого слова grapho – «пишу»). Точки, в которых соединяются кривые, называются узлами.

Посмотрите внимательно на рисунки. Как вы думаете, какие существуют виды таких узлов? От чего это зависит?

Ученик: Есть узлы, в которых соединяются две линии, три линии, четыре линии и пять линий.

Учитель: Правильно, как же тогда можно разделить все эти узлы на какие-то подгруппы, как вы думаете?

Ученик: Узлы, в которых сходится четное количество линий, и узлы, в которых сходится нечетное количество линий.

Учитель: Исходя из этого, как можно назвать эти узлы?

Ученик: Четные и нечетные.

Учитель: Правильно. Еще раз сформулируйте, какие узлы называются четными, а какие нечетными.

Ученик: Четным называется узел, в котором сходится четное количество линий. Нечетным называется узел, в котором сходится нечетное количество линий.

Учитель: Теперь, с учетом только что сформулированных определений и рисунков, попытайтесь вывести правило, с помощью которого можно было бы понять, можно данную фигуру нарисовать одним росчерком.

Учащиеся самостоятельно выводят правило и вместе формулируют его, на основании сформулированных ранее определений и применения этих определений к рисункам.

Ученик: Если в фигуре (на графе) больше двух нечетных узлов, то ее нельзя нарисовать одним росчерком.

Учитель: Вы правы. Вы сформулировали важное правило, мы еще потренируемся его применять на практике. А теперь вернемся к задаче, с которой мы начали наше занятие. Как же возможно ее решить с учетом сделанных нами выводов, воспользовавшись сформулированным правилом?

Ученик: Решим эту задачу, изобразив рисунок с помощью графа. Узлами обозначим берега и острова, и семь кривых, которые будут обозначать мосты.

Ученик: Если бы существовал искомый маршрут, то этот рисунок можно было бы вычертить одним росчерком.

Учитель: Вы правы. Долго бы спорили жители города, если бы через Кёнигсберг не проезжал великий математик Леонард Эйлер. Он заинтересовался спором и разрешил его. Подумайте, как мог рассуждать великий ученый?

Возможны различные варианты рассуждений, но после обсуждения всех вариантов должны прийти к следующему:

Ученик: Возьмем один из островов, например остров D. К нему ведут три моста. Допустим, прогулка начинается вне этого моста, тогда, поскольку по каждому мосту можно пройти только один раз, заканчиваться она должна на этом острове.

Учитель: Хорошо, но у нас еще есть два берега и еще один остров, еще пять мостов. Какие следует проводить рассуждения дальше?

Страницы: 8 9 10 11 12 13 14 15 16 17 18

Это интересно:

Психолого-педагогические особенности учащихся с ЗПР
Изучению психолого-педагогических особенностей детей с задержкой психического развития посвящены труды многих российских педагогов, психологов, дефектологов (Л.С. Выготский, Т.А. Власова, Б.В. Зейгарник, А.Р. Лурия, В.В. Лебединский, К.С. Лебединская, В.И. Лубовский, М.С. Певзнер, Г.Е. Сухарева). В ...

Развитие творческих способностей на уроках информатики
Современная педагогика уже не сомневается в том, что учить творчеству возможно. Вопрос, по словам И.Я. Лернера, заключается лишь в том, чтобы найти оптимальные условия для такого обучения. Под творческими (креативными) способностями учащихся понимают " .комплексные возможности ученика в соверш ...

Формы организации досуговой деятельности старших дошкольников в педагогическом процессе ДОУ
Проблема организации досуга не нова, ее издавна интересовались прогрессивные педагоги и психологи. К.Д.Ушинский писал, что «когда человек остается без работы в руках, без мысли в голове, именно в эти минуты портится голова, сердце, нравственность». В русском языке слово «досуг» появилось в 15 веке, ...

КАТЕГОРИИ

Copyright © 2021 - All Rights Reserved - www.dealeducation.ru