Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Домашние задания творческого характера

Страница 2

При каких значениях р уравнение в) имеет решение?

Решение примера в) заканчивается указанием на то, что D = р - 24 0 и уравнение имеет решение при р24. Значение параметра р принадлежат объединению промежутков (- - 2] [ - 2; +).

Б. Решите в натуральных числах уравнение: х - 3ху + 2у + 6 = 0.

Решение. Будем считать у параметром. Тогда D = у - 24. Значение D должно быть точным квадратом. Следовательно, уравнение у - 24 = k нужно решить в натуральных числах: у - k = 24, (у + k) (у - k) = 24= 12 = 8 = 6. Это дает четыре системы линейных уравнений, из которых только две имеют решение в натуральных числах.

у = 7; х - 21х + 104 = 0.

Отсюда х = 8 или х = 13.

у = 5; х - 15х + 56 = 0.

Получаем х = 7 или х = 8.

Исходное уравнение имеет в натуральных числах четыре решения: (8;7), (13;7), (7;5), (8;5).

Разумеется, задания творческого характера даются не каждый день, но они вызывают живой интерес всего класса, Учащиеся ждут эти задания. Большую роль в создании творческого начала в деятельности учащихся играют так называемые оригинальные домашние задания. К таким заданиям можно отнести: заполнить пропуски в последовательности чисел, которые получаются в результате действий указанных после текста; задания связанные с жизненными ситуациями, физическими явлениями, историческими событиями - такого рода задания вызывают огромный интерес у учащихся и несомненно носят творческий характер.

Приведу несколько примеров таких заданий.

5 класс, тема "Действия над натуральными числами".

Каждому ученику предлагается карточка с текстом, В тексте пропуски, в них надо поставить числа - результаты выполнения заданий, указанных после текста. Пропуски заполняются в том порядке, в каком следуют друг за другом задания.

Все карточки посвящены теме "Числовые великаны вокруг и внутри нас". Вот текст одной из них:

"Древние люди говорили: "Звезд на небе как песчинок на морском берегу". В старину не было телескопов, а простым глазом мы видим на небе всего около …звезд. Подсчитано, что число песчинок на берегу моря в миллион раз больше, чем звезд, доступных невооруженному глазу.

Величайшие числовой гигант скрывается в воздухе, которым мы дышим. Каждый кубический сантиметр воздуха (это примерно объем воздуха в одном наперстке) заключает в себе … квинтиллионов мельчайших частиц, называемых молекулами. Если бы на свете было бы столько людей, сколько молекул воздуха в наперстке, то для них буквально не хватило бы места на нашей планете.

Если каплю крови рассмотреть в микроскоп, то в ней станут, видны очень мелкие тельца красного цвета. В 1 мм крови, то есть в одной капле, заключается примерно … красных телец. Сколько же всего их в вашем теле? Если вы весите 40 кг, то в вашей крови примерно… триллионов красных кровяных телец. Представим себе, что эта армия кружочков выложена в ряд друг за другом. Длина такого ряда составила бы … км. Нитью такой длины можно было бы обмотать земной шар по экватору более … раз".

Страницы: 1 2 3 4 5 6 7

Это интересно:

Роль семьи в процессе формирования личности детей с нарушениями слуха
Появление в семье ребенка с врожденным пороком развития ставит перед родителями ряд сложных проблем. Впервые узнав о диагнозе своего ребенка и осознав всю тяжесть заболевания, родители испытывают болезненный шок и отчаяние, затем приходит чувство вины перед своим ребенком. Изоляция, чрезмерная опек ...

Социально-психологические факторы, влияющие на проявление творчества в подростковом возрасте
На современном этапе развития психологии нельзя считать устоявшимся единое определение понятия креативность. При этом практически во всех подходах подчеркивается такая важная отличительная черта креативности, как способность выйти за рамки заданной ситуации. Установлено, что для развития креативнос ...

История развития начального и среднего образования
В период средневековья из системы ученичества в Европе зародились цеховые и гильдейские школы, а также школы счёта для детей торговцев и ремесленников, в которых обучение велось на родном языке. В это же время появились городские школы для мальчиков и девочек, где преподавание велось как на родном, ...

КАТЕГОРИИ

Copyright © 2021 - All Rights Reserved - www.dealeducation.ru