Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Условный экстремум функции двух переменных

Педагогика и воспитание » Разработка методики обучения теме экстремумов » Условный экстремум функции двух переменных

Страница 1

При отыскании экстремумов функции двух переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция

и линия L на плоскости 0xy. Задача состоит в том, чтобы на линии L найти такую точку P (x, y), в которой значение функции

является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L, находящихся вблизи точки P. Такие точки P называются точками условного экстремума функции

на линии L. В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L.

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Проиллюстрируем сказанное на примере.

Пример №1.

Графиком функции

является верхняя полусфера (рис. 2).

Рис. 2.

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке ,

лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции

на данной линии; ей соответствует точка M1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Определение 1. Говорят, что , где имеет в точке , удовлетворяющей уравнению , условный или относительный максимум (минимум): если для любой, удовлетворяющей уравнению , выполняется неравенство

.

Определение 2. Уравнение вида называется уравнением связи.

Теорема

Если функции и непрерывно дифференцируемы в окрестности точки , и частная производная , и точка является точкой условного экстремума функции относительно уравнения связи , то определитель второго порядка равен нулю:

Страницы: 1 2 3

Это интересно:

Исследование отношения детей и учителей к дидактическим играм на уроках математики
Одной из поставленных задач курсовой работы было выявление отношений учителей и учащихся к дидактической игре. В результате этого в школе №121 было проведено анкетирование учителей и учащихся. В анкетировании приняло участие 14 учителей. В процессе опроса были выявлены следующие данные: Вопрос №1: ...

Разработка метода проектов
Роль учителя при выполнении проекта. Самое сложное для учителя в ходе проектирования - это роль независимого консультанта. Трудно удержаться от подсказок, особенно если педагог видит, что учащиеся выполняют что-то неверно. Но важно в ходе консультаций только отвечать на возникающие у школьников воп ...

Теоретические представления о воспитании
Будучи сложным социальным явлением, воспитание является объектом изучения ряда наук. В рамках философии исследуется познавательное, ценностное, социально-политическое, нравственное и эстетическое отношение человека к миру, онтологические и гносеологические основы воспитания; формулирует наиболее об ...

КАТЕГОРИИ

Copyright © 2019 - All Rights Reserved - www.dealeducation.ru