Образование обогащает культуру, способствует взаимопониманию...
			Сегодня как никогда перед человечеством стоит вопрос о необходимости...
			Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Длина является величиной характеризующей пространственную протяженность объектов. Тем самым можно выяснить смысл арифметических операций над натуральными числами, рассматриваемые как меры длин отрезков.
Пусть отрезок z состоит из отрезков x и y, и пусть длины этих отрезков при выбранной единице e выражаются натуральными числами c, ⍺, b, т.е. c= m e (z), ⍺ = me (x), b= m e (y). Это означает, что отрезок x состоит из ⍺ отрезков, равных e; отрезок y состоит из b отрезков, равных e. Следовательно, весь отрезок z состоит из ⍺+b отрезков, равных e т.е. me (z) = c = ⍺+b = me (x) +me (y). Таким образом, можно дать определение суммы натуральных чисел:
Суммой натуральных чисел ⍺ и b называется натуральное число ⍺+b, являющееся мерой длины отрезка z, состоящего из отрезков x и y, мерами длин которых являются числа ⍺ и b:
⍺+b= me (z), где z= x+y; me (x) = ⍺; me (y) = b
Существование и единственность суммы натуральных чисел вытекают из существования и единственности меры длины отрезка при выбранной единицы измерения.
Рассмотрим основные законы, которым удовлетворяет операция сложения целых неотрицательных чисел:
(∀⍺,b ∈ Ne) (⍺+b= b+⍺) - коммутативный закон сложения.
(∀⍺,b, c ∈ Ne) ( (⍺+b) + c = ⍺+ (b+c)) - ассоциативный закон сложения.
Вычитание
При аксиоматическом построении теории натуральных чисел вычитание обычно определяется как операция, обратная сложению.
Вычитанием натуральных чисел ⍺ и b называется операция, удовлетворяющая условию: ⍺-b =с тогда и только тогда, когда b+с =⍺.
Число ⍺-b называется разностью чисел ⍺ и b, число ⍺ - уменьшаемым, а число b - вычитаемым.
В начальном обучении математике определение вычитания, обратного сложению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с появления действий над однозначными числами. Учащиеся должны хорошо понимать, что вычитание связано со сложением, и использовать эту взаимосвязь при вычислениях.
С точки зрения количественной теории разностью множеств A и B называется множество, содержащее все элементы, которые принадлежат множеству A и не принадлежат множеству B.
Разностью множеств A и B обозначают A \ B. Тогда, по определению, имеем:
A\ B = {x | x ∈ A и x∉ B}.
В школьном курсе математики чаще всего приходится выполнять вычитание множеств в случае, когда одно из них является подмножеством другого, при этом разность множеств A \ B называют дополнением множества B до множества A, и обозначают символом B´A.
Пусть B⊂A. Дополнением множества B до множества A называется множество, содержащее все элементы множества A, которые не принадлежат множеству B. A \ B = B´A
Из определения следует, что B´A= {x | x ∈ A и x∉ B}.
Как уже было сказано, в случае, когда B⊂A,
Разностью целых неотрицательных чисел ⍺ и b называется целое неотрицательное число с, удовлетворяющее условию b+с =⍺.
Вычитание множеств обладает рядом свойств. В частности, можно доказать, что для любых множеств A, B и C справедливы следующие неравенства:
(A \ B) \ C = (A \C) \ B;
(A U B) \ C = (A \C) U (B \ C);
(A \ B) ∩ C = (A ∩ C) \ (B ∩ C);
A \ (B U C) = (A \ B) ∩ (A \C);
5) A \ (B ∩ C) = (A \ B) U (A \C).
Используя определение разности целых неотрицательных чисел, можно дать теоретика - множественное обоснование правил, связывающих операции вычитания:
Правило вычитания числа из суммы:
а) (⍺+b) - с= (⍺-b) +b, если ⍺≥с
б) (⍺+b) - с= ⍺+ (b - с), если b≥с
Чтобы вычесть из суммы число, достаточно вычесть это число из одного слагаемого суммы и к полученному результату прибавить другое слагаемое.
Это интересно:
Лингвистические основы формирования словообразовательной стороны речи у
дошкольников
	 " . Не только интеллектуальное развитие ребенка, но и формирование его характера, эмоций у личности в целом, находится в непосредственной зависимости от речи" (Л. С. Выгодский).Вот почему среди многих важных задач воспитания и обучения в дошкольных учреждениях, задача обучения родному язы ...
	
Антропологический подход к воспитанию личности
	 Педагогическая антропология отличается многофакторным подходом к истокам и процессам развития личности. Это предполагает исследование взаимодействия биологических, социальных, духовных факторов в структуре личности. В последние годы в связи с изменением картины мира изменяются и взгляды на человека ...
	
Правовые основы современного образования в России
	 Базовой юридической основой образования является статья 26 Всеобщей декларации прав человека, принятой ООН 10 декабря 1948 года. В ней говорится: «Каждый человек имеет право на образование. Образование должно быть бесплатным по меньшей мере в том, что касается начального и общего образования. Начал ...