Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Анализ учебников по математике авторов Н.Я. Виленкина и Л.Г. Петерсон для 5 и 6 классов

Педагогика и воспитание » Функциональная пропедевтика на уроках математики в пятых-шестых классах » Анализ учебников по математике авторов Н.Я. Виленкина и Л.Г. Петерсон для 5 и 6 классов

Страница 3

3. На основе наблюдений и анализа решенных заданий, выяснения свойств и зависимостей изучаемого понятия учащиеся под руководством учителя делают вывод о формируемом понятии, устанавливают связь изучаемого материала с ранее изученным и т.п.

4. И, наконец, решают упражнения на применение полученных знаний о понятии, т.е. перенос знаний на новую ситуацию.

Рассмотрим использование метода, на примере введения понятия о координатах точек на прямой по учебнику Виленкина Н.Я. для 5 класса.

В учебнике разбираются следующие дидактические задания, для формирования понятия:

1. Белка вылезла из дупла и бегает по стволу дерева вверх и вниз (см.

рисунок 1). Покажите, где будет находится белка, если она удалится от

дупла на 3 м. Сколько ответов можно дать на этот вопрос? Покажите на рисунке, где окажется белка, если она будет находится: а) выше дупла на

2 м; б) ниже дупла на 3 м;

в) ниже дупла на 1,5 м; г) выше дупла на 2,5 м.

Введение буквенной символики позволяет познакомить учащихся с важнейшими понятиями современной математики – переменная, уравнение, неравенство, что способствует развитию функционального мышления, поскольку с ними тесно связана идея функциональной зависимости. При работе с переменной школьники осознают, что буквы, входящие в выражение, могут принимать различные числовые значения, а само буквенное выражение является обобщенной записью числовых выражений. Одни из примеров системного использования буквенной символики являются задачи, представленные в блиц-турнирах. Отсутствие конкретных чисел заставляет учеников искать путь решения задачи, опираясь на существенные связи между данными и искомыми. Эта модель задачи – знаковая, она более абстрактна, чем числовое выражение. При этом ученик не может вычислить промежуточные результаты, а должен представлять всю цепочку связей между величинами и выстраивать соответствующую последовательность действий. Исследование решения задач с буквенными данными предполагает рассмотрение различных соотношений между значениями букв, а так же выявление возможности или невозможности принятия буквой конкретных числовых значений, установление влияния числовых значений переменных на количество способов решения задачи. Огромное пропедевтическое значение имеет опыт общения учащихся с упражнениями на установление закономерностей в числовых последовательностях и их продолжение:

5. 1, 2, 3, 4… (у = х + 1)

1, 3, 5, 7… (у = 2 · х + 1) (Петерсон)

6. продолжите ряд чисел:

1, 7, 13, 19, …(Виленкин)

Понятие величины, наряду с понятием числа, является основным понятием начального курса математики. Материал данного раздела является богатейшим источником для осуществления опосредованной функциональной пропедевтики. Во-первых, это зависимость (обратнопропорциональная) между выбранной единицей величины (меркой) и ее численным значением (мерой) – чем больше мерка, тем число, полученное в результате измерения величины данной меркой, меньше. Поэтому важно, чтобы при работе с каждой величиной (длиной, массой, площадью, объемом и пр.) учащиеся приобретали опыт измерения величин разными мерками с целью осознанного выбора сначала удобной, а затем и единой мерки.

Во-вторых, при изучении величин, характеризующих процессы движения, работы, купли-продажи формируются представления о зависимости между скоростью, временем и расстоянием, ценой, количеством и стоимостью в процессе решения текстовых задач следующих видов – на приведение к единице (нахождение четвертого пропорционального), нахождение неизвестного по двум разностям, пропорциональное деление.

Особую сложность для учащихся представляет осознание взаимосвязи между этими величинами, поскольку понятие «пропорциональная зависимость» не является предметом специального изучения и усвоения. В программе Л.Г. Петерсон методически эта проблема решается за счет использования следующих приемов:

- Решение задач с недостающими данными («открытым» условием):

7. Васе от дома до школы 540 м, а Паше – 480 м. Кто ближе живет? Кто быстрее дойдет?

8. Саша купил на 30 рублей тетради и на 45 рублей карандаши. На покупку каких предметов он истратил денег больше? Каких предметов он купил больше?

Страницы: 1 2 3 4 5 6

Это интересно:

Классификация занимательного материала по русскому языку
Таким образом, проанализировав литературу, мы составили классификацию занимательного материала и пришли к выводу о том, что он достаточно разнообразен. Его использование на уроках русского языка очень важно. При этом можно применять с каждым разом все новые и новые задания тем самым обогащать речь ...

Формирование светской парадигмы образования
Приведенные здесь описания формирования образования касается западноевропейского мира, так как на востоке образование имеет другую традицию. Нужно сказать, что характеристики светского образования в Новое время отличаются от современного. Новая социокультурные условия периода Возрождения породили г ...

Структуры сознательной дисциплины студента
Сознательная дисциплина - это совокупность социально - полезных качеств, которые находят свое проявление в повседневной жизни и служебной деятельности и основаны на знании морально - правовых норм, их правильном понимании, а также внутренней потребности неукоснительного их исполнения. Наша дисципли ...

КАТЕГОРИИ

Copyright © 2021 - All Rights Reserved - www.dealeducation.ru