Учебная мотивация студента

Образование обогащает культуру, способствует взаимопониманию...

Экологическая культура

Сегодня как никогда перед человечеством стоит вопрос о необходимости...

Мониторинг ВУЗов

Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...

Анализ учебников по математике авторов Н.Я. Виленкина и Л.Г. Петерсон для 5 и 6 классов

Педагогика и воспитание » Функциональная пропедевтика на уроках математики в пятых-шестых классах » Анализ учебников по математике авторов Н.Я. Виленкина и Л.Г. Петерсон для 5 и 6 классов

Страница 5

При анализе чисел, представленных в таблице, учащиеся легко подмечают, что числа первой строки увеличиваются на один, числа второй строки увеличиваются на четыре. Задача учителя – обратить внимание на взаимосвязь значений переменных а и b. В целях усиления прикладной направленности математического образования следует «оживить» данную ситуацию, перевести ее в сюжетный статус.

Чтобы сформировать у учащихся способность к выводу формул, нужно научить их записывать различные утверждения на математическом языке (в виде равенств):

- ручка в три раза дороже карандаша (р = к + 3);

- число а при делении на 5 дает в остатке 2 (а = 5 · b + 2);

- длина прямоугольника на 12 см больше ширины (а = b + 12).

Обязательным условием является обсуждение возможных вариантов значений данных величин с заполнением соответствующих таблиц.

Особое место в курсе Л.Г. Петерсон занимают задания, связанные с математическими исследованиями:

Представь число 16 в виде произведения двух множителей разными способами. Для каждого способа найди сумму множителей. В каком случае получилась меньшая сумма? Проделай это же с числами 36 и 48. Каково предположение?

При выполнении подобных заданий (на исследование зависимости между количеством углов многоугольника и суммарным значением градусных мер углов, между значением периметра различных по форме фигур с одинаковой площадью и пр.) учащиеся совершенствуют навыки работы с таблицей, так как решение удобно фиксировать в таблице. Кроме этого табличный способ фиксации решения используется при решении нестандартных математических задач методом упорядоченного перебора или рационального подбора.

В классе 13 детей. У мальчиков столько зубов, сколько у девочек пальцев на руках и ногах. Сколько в классе мальчиков и сколько девочек? (У каждого мальчика ровно 32 зуба).

Мальчики

Девочки

Проверка

8

5

32 · 8 # 20 · 5

7

6

32 · 7 # 20 · 6

5

8

32 · 5 = 20· 8

Обучение математике по программе Л.Г. Петерсон обеспечивает усвоение учащимися взаимосвязи между результатами и компонентами арифметических действий, формируется представление о «скорости» изменения результата арифметических действий в зависимости от изменения компонентов:

- упражнения на состав числа;

- частные приемы вычислений (36 + 19 = 35 + 20; 36 – 19 = 37 – 20; 12 · 5 = 12 · 10 : 2);

- оценка суммы, разности, произведения, частного.

При выполнении подобных заданий важно представлять информацию многосенсорно.

Как изменится сумма, если одно слагаемое увеличить на 10, а второе уменьшить на 5?

Как изменится площадь прямоугольника (или произведение двух чисел), если одну из сторон (одно из чисел) увеличить на 3?

Наши исследования показывают, что значительная часть учащихся выполняют подобные задания методом подстановки конкретных числовых значений. Методически грамотным в данной ситуации будет графически и аналитически интерпретировать условие.

(а + 3) · b = а · b + 3 · b

Понятие функции в старших классах связано с системой координат. В курсе Л.Г. Петерсон содержится материал для пропедевтической работы в этом направлении:

- числовой отрезок, числовой луч, координатный луч;

- таблица Пифагора, координаты на плоскости (координатный угол);

- графики движения;

- круговые, столбчатые и линейные диаграммы, наглядно представляющие зависимость между дискретными величинами.

Итак, изучение арифметических операций, увеличения и уменьшения числа на несколько единиц или в несколько раз, зависимости между компонентами и результатами арифметических действий, решение задач на нахождение четвертого пропорционального, на связь между скоростью, временем и расстоянием; ценой, количеством и стоимостью; массой отдельного предмета, их количеством и общей массой; производительностью труда, временем и работой; и т. д., с одной стороны, лежат в основе формирования понятия функции, а с другой – изучаются на основе функциональных понятий. Следует отметить, что достаточно большое пропедевтическое значение имеет графическое моделирование: графическая интерпретация условия задачи, рисунок, чертеж и другое. Информация, представленная в графической форме, легче для восприятия, емкая и достаточно условная, призвана опредмечивать абстрактные понятия, нести информацию лишь о существенных признаках объекта, формировать графические навыки учащихся.

Страницы: 1 2 3 4 5 6

Это интересно:

Классификация театрализованных игр
Существует несколько точек зрения на классификацию игр, составляющих театрально-игровую деятельность. По классификации Л.С. Фурминой - это предметные (действующими лицами являются предметы: игрушки, куклы) и непредметные (дети в образе действующего лица исполняют взятую на себя роль). Классифицируя ...

Роль семьи в процессе формирования личности детей с нарушениями слуха
Появление в семье ребенка с врожденным пороком развития ставит перед родителями ряд сложных проблем. Впервые узнав о диагнозе своего ребенка и осознав всю тяжесть заболевания, родители испытывают болезненный шок и отчаяние, затем приходит чувство вины перед своим ребенком. Изоляция, чрезмерная опек ...

Нарушения письменной речи и их преодоление у младших школьников
Нарушения письменной речи подразделяются на две группы в зависимости от того, какой вид ее нарушен. При нарушении продуктивного вида отмечаются расстройства письма, при нарушении рецептивной письменной деятельности – расстройства чтения. Дислексия – частичное специфическое нарушение процесса чтения ...

КАТЕГОРИИ

Copyright © 2019 - All Rights Reserved - www.dealeducation.ru