Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Переменную x называют независимой переменной или аргументом, а y – зависимой переменной. Говорят также, что y является функцией от x. Значение y, соответствующее заданному значению x, называют значением функции.
Чтобы задать функцию, нужно задать числовое множество Х (его называют областью определения функции) и способ (правило), с помощью которого для каждого числа x из множества Х можно найти соответствующее число у – значение функции.
Функции принято обозначать буквами f, g, h и др. Если f – функция, то значение переменной у, соответствующее аргументу х, обозначают f(x), т.е. y=f(x).
Чаще всего функции задают с помощью формул, указывающих, как по данному значению аргумента найти соответствующее значение функции. Например, если длина стороны квадрата равна x дм, а площадь y дм2 , то формула y=x2 задаёт функцию, областью определения которой будет множество положительных действительных чисел.
Если куплено х тетрадей, по 3 рубля каждая, а у рублей – стоимость всей покупки, то формула у=3х задаёт функцию, область определения которой есть множество целых неотрицательных чисел.
Иногда функцию задают таким образом:
у= 3х-1, при х>0;
2х, при х≤0,
т. е. на разных участках значений х функция задаётся различными формулами.
Часто при задании функции с помощью формулы её область определения не указывается. В таких случаях считают, что область определения состоит из всех значений переменной, при которой эта формула имеет смысл. Никогда не следует забывать, что формула – это не сама функция, а лишь один из способов её задания. Следует отметить, что функцию можно задать и просто описанием. Например: каждому числу х поставить в соответствие его целую часть, т. е. у=[х].
Иногда функцию задают в виде таблицы. Примером табличного задания функции будет зависимость точки кипения воды от атмосферного давления:
Давление (мм) |
300 |
350 |
400 |
450 |
500 |
550 |
600 |
650 |
700 |
Температура (°С) |
75,8 |
79,6 |
83,0 |
85,8 |
88,5 |
91,2 |
93,5 |
95,7 |
97,6 |
Приведём ещё пример зависимости длины пружины от растягивающей её силы (данные получены эмпирическим путём):
Растягивающая сила (кг) |
0 |
5 |
10 |
15 |
20 |
25 |
Длина пружины (см) |
13,0 |
14,2 |
15,4 |
16,6 |
17,8 |
19,0 |
При табличном задании функции можно находить и промежуточные значения переменных с помощью линейного интерполирования, но приближённо.
Многие приборы записывают непрерывно показания графически, например, термографы, барографы, сейсмографы, кардиографы и др.
В качества примера хорошо продемонстрировать учащимся запись барографа или термографа.
Это интересно:
Сущность понятий творчества, творческая деятельность,
творческие способности
Многие исследователи детской психологии и психологии творчества убеждают в возможности обучить творчеству, дать детям осмысленный импульс к творческой деятельности. Обучение творчеству имеет важный социальный аспект. Если школьник с самого начала своей ученической деятельности подготавливается к то ...
Методические подходы к реализации нравственно-экономического воспитания детей
6-7 лет в игровой деятельности
Учитывая возрастные особенности дошкольников и разнообразие содержания программ по экономическому воспитанию, а также отсутствие разработок по нравственно-экономическому воспитанию детей, мы рассмотрели разные методические подходы к формированию экономических представлений у детей, которые являются ...
Возможности использования уроков-экскурсий для формирования познавательного
интереса младших школьников
Экскурсия (от лат. excursio - поездка) является такой формой организации учебно-воспитательного процесса, которая позволяет проводить наблюдения, непосредственно изучать различные предметы, явления и процессы в естественных или искусственно созданных условиях, тем самым развивая познавательную акти ...