Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Например:
Найдите сумму чисел 4 и 6 (Ответ: сумма чисел 4 и 6 - это 10)
Выражение вида 8 - 3 называют разностью.
Число 8 называют уменьшаемым, а число 3 - вычитаемым.
Значение выражения - число 5 могут называть значением разности.
Например:
Найдите разность чисел 6 и 4. (Ответ: разность чисел 6 и 4 - это 2)
Поскольку названия компонентов действий сложения и вычитания вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи.
Так же, учащиеся выполняют предметные действия в виде графических и символических моделей. В качестве основной цели здесь выступает не решение простых задач, а сознание предметного смысла числовых выражений и равенств.
Деятельность учащихся сначала сводиться к переводам предметных действий на язык математики, а затем к установлению соответствия между различными моделями.
Например: учитель показывает, как записать равенство, и знакомит детей с этим понятием, а также с термином "значения суммы".
Затем числовые равенства интерпретируются на числовом луче.
Также можно предложить задание, "Пользуясь рисунком, вставьте числа в "окошки"":


При работе с этим рисунком знак "+" служит ориентиром для описания картинки: " Слева 3 звездочки, справа - 1. Всего на рисунке 4 звездочки" Названные числа расставляют в "окошки", и получается равенство: 3+1=4.
Возможно, познакомить детей с числом нуль как с компонентом арифметического действия сложения. Для этой цели предлагается задание: "Ничего не изменилось". Для этого можно записать равенство: 5+0=5, 5-0=5
Из курса математики известно, что для сложения целых неотрицательных чисел выполняются коммуникативные и ассоциативные свойства. В начальном курсе математики учащиеся знакомятся с коммуникативным свойством сложения, называя его "переместительное свойство сложения" или "перестановка слагаемых". При формировании у детей представлений о смысле сложения полезно предлагать им действия связанные с переместительным свойством сложения, например:
а) На левой тарелке 4 апельсина, на правой-3. Покажи, сколько апельсинов на двух тарелках.
Ученики выполняют схематический рисунок и записывают равенства, подсчитав количество апельсинов на двух тарелках.
б) Теперь на левой тарелке 3 апельсина, на правой - 4. Покажи, сколько апельсинов на двух тарелках.
Ученики выполняют схематический рисунок и записывают равенство, подсчитав количество апельсинов на двух тарелках.
Это интересно:
Биография Я.А. Коменского
Коменский Ян Амос, знаменитый чешский педагог, «отец новой педагогики», гуманист, общественный деятель, родился в 1592 г. в Нивнице, в Чехии, в протестантской семье Общины чешских братьев. Он учился в братской латинской школе, преподавание там было настолько нудным и неинтересным, что уже в последн ...
Набор профессий, вакансии. Выбор и отбор.
Сознательный личный выбор
В нашей стране существуют многие тысячи профессий. Абстрактно говоря, каждый молодой человек может выбирать свое будущее дело из всего этого необозримого многообразия. Практически, однако, спектр возможных выборов всегда значительно уже. Если бы даже человек имел представление обо всех профессиях, ...
Сущность понятия пространственного мышления
Проблема формирования пространственного мышления школьников не нова для методики обучения математики, а об актуальности её говорится и пишется уже не одно столетие. Но анализ психолого-педагогической литературы показывает, что со времен Ф. Клейна (1849-1925 гг.) мало, что изменилось в решении этой ...