Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
Например:
Найдите сумму чисел 4 и 6 (Ответ: сумма чисел 4 и 6 - это 10)
Выражение вида 8 - 3 называют разностью.
Число 8 называют уменьшаемым, а число 3 - вычитаемым.
Значение выражения - число 5 могут называть значением разности.
Например:
Найдите разность чисел 6 и 4. (Ответ: разность чисел 6 и 4 - это 2)
Поскольку названия компонентов действий сложения и вычитания вводятся по соглашению (детям сообщаются эти названия и их необходимо запомнить), педагог активно использует задания, требующие распознавания компонентов действий и употребления их названий в речи.
Так же, учащиеся выполняют предметные действия в виде графических и символических моделей. В качестве основной цели здесь выступает не решение простых задач, а сознание предметного смысла числовых выражений и равенств.
Деятельность учащихся сначала сводиться к переводам предметных действий на язык математики, а затем к установлению соответствия между различными моделями.
Например: учитель показывает, как записать равенство, и знакомит детей с этим понятием, а также с термином "значения суммы".
Затем числовые равенства интерпретируются на числовом луче.
Также можно предложить задание, "Пользуясь рисунком, вставьте числа в "окошки"":
При работе с этим рисунком знак "+" служит ориентиром для описания картинки: " Слева 3 звездочки, справа - 1. Всего на рисунке 4 звездочки" Названные числа расставляют в "окошки", и получается равенство: 3+1=4.
Возможно, познакомить детей с числом нуль как с компонентом арифметического действия сложения. Для этой цели предлагается задание: "Ничего не изменилось". Для этого можно записать равенство: 5+0=5, 5-0=5
Из курса математики известно, что для сложения целых неотрицательных чисел выполняются коммуникативные и ассоциативные свойства. В начальном курсе математики учащиеся знакомятся с коммуникативным свойством сложения, называя его "переместительное свойство сложения" или "перестановка слагаемых". При формировании у детей представлений о смысле сложения полезно предлагать им действия связанные с переместительным свойством сложения, например:
а) На левой тарелке 4 апельсина, на правой-3. Покажи, сколько апельсинов на двух тарелках.
Ученики выполняют схематический рисунок и записывают равенства, подсчитав количество апельсинов на двух тарелках.
б) Теперь на левой тарелке 3 апельсина, на правой - 4. Покажи, сколько апельсинов на двух тарелках.
Ученики выполняют схематический рисунок и записывают равенство, подсчитав количество апельсинов на двух тарелках.
Это интересно:
Результаты контрольно-педагогических испытаний школьников первого класса
В исследованиях принимали участие 29 первоклассников из экспериментальной группы (14 мальчиков и 15 девочек) и 36 - из контрольной (17 мальчиков и 19 девочек). Экспериментальная группа делилась на три подгруппы с учетом физического развития. В первую подгруппу (уровень "ниже среднего") во ...
Большая психологическая игра "Неведомые миры"
Задачи: •развитие коммуникативных навыков; •развитие социальной восприимчивости, воображения, доверия, способности к эмпатии; •формирование навыков и установок, необходимые для успешного взаимодействия с представителями другой культуры, людьми, исповедующими другие взгляды, и т.п.; •дать возможност ...
Использование теоретической модели образовательного
учреждения К.Н. Вентцеля в практике современных образовательных учреждений
Приведенный в предыдущих параграфах анализ содержательной наполненности идеи К.Н. Вентцеля о "Доме Свободного Ребенка" привел нас к выводу о том, что "ДСР" - это место цельной и гармоничной жизни воспитателей и воспитанников, где должно осуществляться ценностно-смысловое равенст ...