Образование обогащает культуру, способствует взаимопониманию...
Сегодня как никогда перед человечеством стоит вопрос о необходимости...
Мониторинг высших учебных заведений и его филиалов волнует всех жителей страны...
С целью формирования у младших школьников представлений о функциональной зависимости нами был проведен формирующий этап эксперимента, в котором приняли участие только учащиеся экспериментального 3 «А» класса. Для этого нами применялся комплекс подобранных для этой цели упражнений, направленных на формирование функциональной зависимости у младших школьников. Изучение проводилось по теме школьного курса математики «Зависимость между результатами и компонентами арифметических действий». По теме проводилось пробное и основное исследование.
Зависимость между элементами арифметических действий изучалась каждым из испытуемых в индивидуальном порядке под руководством экспериментатора один раз, затем второй, третий, — так до полного овладения ею. В конце исследования-обучения давалась в индивидуальном порядке контрольная работа.
Изучение зависимости между элементами геометрических фигур проводилось в течение нескольких уроков. Сначала учащиеся знакомились с простейшими случаями зависимости между площадью и стороной прямоугольника при постоянной величине смежной стороны. Затем — с зависимостью между сторонами и площадью квадрата. И, наконец, со школьниками велись занятия-исследования по обучению их пониманию и усвоению зависимости между основанием, высотой и площадью прямоугольника, параллелограмма и треугольника при постоянной величине суммы их основания и высоты.
Все занятия проводились в индивидуальном порядке. В конце исследования-обучения в индивидуальном же порядке давалась контрольная работа.
По теме «Зависимость между компонентами и результатами действий» работа проводилась следующим образом.
Группа изучала материал в таком порядке изменение суммы, затем — изменение произведения, далее — изменение разности и, наконец, — изменение частного.
Затем группа изучала материал в том же порядке, но в одновременном противопоставлении изменению компонентов изменения результатов действий.
И, наконец, группа изучала материал в следующем порядке: изменение суммы, затем — изменение разности, далее — изменение произведения и, наконец, — изменение частного.
Для изучения зависимости между изменением площади и изменением входящих и ее выражение компонентов были созданы группы, работавшие:
Первая группа — с графиками.
Вторая группа — с графиками + наглядное изображение образа меняющейся фигуры в тетради
Третья группа — с диаграммами.
Четвертая группа — с наглядным изображением образа меняющейся фигуры в тетради
В изучении зависимости между элементами действии ученик пользуется конкретным примером. Он постепенно переходит от использования данного единичного примера, как необходимого в выражении зависимости, к использованию его, как возможного для выражения разбираемой зависимости.
В активной деятельности с вариативным использованием примеров ученик в процессе обучения доходит до понимания и усвоения обобщенного характера изменения зависимых величин, от «живого созерцания» он поднимается к «абстрактному мышлению» и затем конкретизирует обобщенные знания в практическом применении. Все это связано с совершенствованием анализа и синтеза в совместной деятельности первой и второй сигнальных систем при ведущей роли второй, словесной системы мозговой коры.
При решении задач в первое время ученики не осмысливали их на базе заключенной в них функциональной зависимости, за внешним оформлением не вскрывали сущности изученной уже в принципе ими зависимости. Обобщающая и конкретизирующая деятельность реализовалась лишь применительно к заданиям — примерам. Она не переносилась на решение задач. Развитие умения переосмысливать решение примеров на основе функциональной зависимости в дальнейшей работе ученика, в связи с совершенствованием избирательной иррадиации и развитием подвижности мозговых процессов, переносилось и на решение задач.
Это интересно:
Особенности внеклассной работы по математике
Обучение математике с одной стороны традиционно изучено и проверено. Но существование методики развития интереса к математике встает перед любым учителем. Проблема интереса в обучении не нова. Значение его утверждали многие дидакты прошлого. В самых разнообразных трактовках проблемы в классической ...
Развитие музыкальных способностей у ребенка
Вашему ребенку от 3-х до 4-х лет. Если вы до сих пор не взялись за его музыкальное воспитание, то Вы опоздали на 3 - 4 года. Да, конечно, закладка всех знаний происходит в первые 3 года. Но не стоит отчаиваться. Надо просто наверстывать упущенное. Впрочем, может, все же, Вы не все упустили? Вспомни ...
Подвижник
свободного воспитания К.Н. Вентцель
Константин Николаевич Вентцель принадлежит к той категории ученых, которые мало известны сегодня среди широкой педагогической общественности. Причин тому много, но главная из них состоит в том, что с приходом новой власти в 1917 году, он не отказался от своих прежних взглядов, а как бы ушел из акти ...